Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[diaquacalcium(II)]bis[μ-2-oxo-1,2-dihydropyridine-1-acetato]]

Jing-Gui Zhao, Shan Gao,* Zhu-Yan Zhang, Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.030$
$w R$ factor $=0.073$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title coordination polymer, $\left[\mathrm{Ca}(2-\mathrm{OPA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$ [2-OPA ${ }^{-}$is 2-oxo-1,2-dihydropyridine-1-acetate, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3}$], the Ca atom is eight-coordinated by six O atoms from four $2-\mathrm{OPA}^{-}$ligands and two water molecules, and displays a dodecahedral coordination geometry. Each $2-\mathrm{OPA}^{-}$ligand bridges two adjacent Ca atoms, forming a chain along the a-axis direction. The Ca…Ca separation within the polymer is 4.1022 (8) Å. A two-dimensional supramolecular framework is further constructed by hydrogen bonds and weak $\pi-\pi$ stacking interactions.

Comment

2-Oxo-1,2-dihydropyridine-1-acetic acid (2-OPAH), known as an important medical intermediate (Klopman \& Buyukbingol, 1988), is a potential multidentate ligand with versatile binding ability. However, there is little information on the structure of metal complexes formed by the 2-OPAH ligand. Recently, we have reported the structure of the mononuclear complexes, $\left[M(2-\mathrm{OPA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right](M=\mathrm{Mg}$, Co; Gao, Huo et al., 2004; Gao, Zhang et al., 2004), which are isostructural. We report here the synthesis and crystal structure of a new one-dimensional calcium-based coordination polymer, $\left[\mathrm{Ca}(2-\mathrm{OPA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, (I).

As shown in Fig. 1, the asymmetric unit of (I) consists of one $\mathrm{Ca}^{\mathrm{II}}$ atom, two 2-OPA ${ }^{-}$ligands and two coordinated water molecules. The $\mathrm{Ca}^{\mathrm{II}}$ atom is coordinated by six O atoms from four $2-\mathrm{OPA}^{-}$ligands and two water molecules in a dodecahedral coordination geometry (Fig. 2).

Each $2-\mathrm{OPA}^{-}$ligand bridges two adjacent $\mathrm{Ca}^{\mathrm{II}}$ atoms, forming a one-dimensional chain along the a-axis direction. The $\mathrm{Ca} \cdots$ Ca distance between adjacent atoms is 4.1022 (8) \AA.

Received 22 April 2005
Accepted 9 May 2005
Online 11 January 2006

Figure 1
View of the title complex, showing 30% probability ellipsoids for the nonH atoms. Hydrogen-bond interactions are shown as dashed lines.

Moreover, there exist weak $\pi-\pi$ stacking interactions between adjacent pyridine rings [centroid-centroid distance = 3.9 (2) $\AA]$ and hydrogen bonds, which are formed between the coordinated water molecules and carboxyl O atoms, resulting in an extended layer structure parallel to the $a b$ plane (Table 2).

Experimental

The title complex was prepared by the addition of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(4.72 \mathrm{~g}, 20 \mathrm{mmol})$ to an aqueous solution of 2-oxo-1,2-dihydro-pyridine-1-acetic acid $(5.84 \mathrm{~g}, 40 \mathrm{mmol})$. The resulting solution was stirred and the pH was adjusted to 7 with 0.2 M NaOH solution. After evaporation at room temperature for a week, colourless single crystals were obtained from the filtered solution. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{CaN}_{2} \mathrm{O}_{10}$: C 44.21, H 4.24, N 7.36%; found: C 44.08, H 4.35, N 7.50\%.

Crystal data

$\left[\mathrm{Ca}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=380.37$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=7.9996$ (16) Å
$b=8.2377$ (16) \AA
$c=24.153$ (5) A
$V=1591.6(6) \AA^{3}$
$Z=4$
$D_{x}=1.587 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.846, T_{\text {max }}=0.928$
13703 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 11561 reflections
$\theta=3.5-27.5^{\circ}$
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Block, colourless
$0.39 \times 0.24 \times 0.17 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.073$
$S=1.00$
3590 reflections
239 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
The coordination polyhedron of the Ca atom [symmetry code: (i) $x-\frac{1}{2}$, $\left.\frac{1}{2}-y, z\right]$.

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Ca} 1-\mathrm{O} 1$	$2.5766(15)$	$\mathrm{Ca} 1-\mathrm{O} 5^{\mathrm{i}}$	$2.5342(16)$
$\mathrm{Ca} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.4011(14)$	$\mathrm{Ca} 1-\mathrm{O} 1 W$	$2.424(3)$
$\mathrm{Ca} 1-\mathrm{O} 2$	$2.5344(16)$	$\mathrm{Ca} 1-\mathrm{O} 2 W$	$2.392(4)$
$\mathrm{Ca} 1-\mathrm{O} 4$	$2.3995(14)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.274(4)$
$\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.5749(15)$	$\mathrm{O} 6-\mathrm{C} 10$	$1.241(4)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 1$	$150.72(4)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 1$	$93.50(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 2$	$144.56(6)$	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{i}}$	$51.02(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{i}}$	$69.00(4)$	$\mathrm{O} 1 W-\mathrm{Ca} 1-\mathrm{O} 1$	$95.83(8)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 5^{\mathrm{i}}$	$115.01(5)$	$\mathrm{O} 1 W-\mathrm{Ca} 1-\mathrm{O} 2$	$123.29(8)$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{O} 1 W$	$88.23(8)$	$\mathrm{O} 1 W-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{i}}$	$89.20(7)$
$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 1$	$50.97(5)$	$\mathrm{O} 1 W-\mathrm{Ca} 1-\mathrm{O} 5^{\mathrm{i}}$	$70.18(7)$
$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{i}}$	$93.53(5)$	$\mathrm{O} 2 W-\mathrm{Ca} 1-\mathrm{O} 1$	$88.60(8)$
$\mathrm{O} 2-\mathrm{Ca} 1-\mathrm{O} 5^{\mathrm{i}}$	$68.45(4)$	$\mathrm{O} 2 W-\mathrm{Ca} 1-\mathrm{O} 1^{\mathrm{i}}$	$81.53(8)$
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 1$	$69.00(4)$	$\mathrm{O} 2 W-\mathrm{Ca} 1-\mathrm{O} 2$	$69.53(9)$
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 1^{\mathrm{i}}$	$83.17(4)$	$\mathrm{O} 2 W-\mathrm{Ca} 1-\mathrm{O} 4$	$88.44(10)$
$\mathrm{O} 4^{\mathrm{i}}-\mathrm{C} 1-\mathrm{O} 1$	$139.82(4)$	$\mathrm{O} 2 W-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{i}}$	$96.02(9)$
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 2$	$115.00(5)$	$\mathrm{O} 2 W-\mathrm{Ca} 1-\mathrm{O} 5^{\mathrm{i}}$	$122.97(10)$
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 4^{\mathrm{i}}$	$150.72(4)$	$\mathrm{O} 2 W-\mathrm{Ca} 1-\mathrm{O} 1 W$	$165.95(5)$
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 5^{\mathrm{i}}$	$144.45(6)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$110.81(18)$
$\mathrm{O} 4-\mathrm{Ca} 1-\mathrm{O} 1 W$	$80.76(8)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 8$	$111.38(18)$

Symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 6$	0.84 (3)	1.92 (3)	2.753 (3)	168 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.84 (3)	2.14 (3)	2.970 (3)	172 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 3{ }^{\text {i }}$	0.86 (3)	1.93 (4)	2.763 (3)	163 (4)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 3$	0.84 (3)	2.16 (4)	2.958 (4)	157 (4)

Symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z$.

H atoms on carbon were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were included in the refinement in the riding-model approximation. The H atoms of water molecules were located in Fourier difference maps and refined using a riding model, with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and $1.39(1) \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

metal-organic papers

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (grant No. 1054G036), and Heilongjiang University for supporting this study.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gao, S., Huo, L.-H., Zhang, Z.-Y., Kong, L.-L. \& Zhao, J.-G. (2004). Acta Cryst. E60, m679-m681.
Gao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m1422-m1424.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA
Klopman, G. \& Buyukbingol, E. (1988). Mol. Pharmacol. 34, 852-862.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

